Part Number Hot Search : 
B20100C 10400 N4740 00300210 CFR101 2SB929PQ ML13156 68HC05P5
Product Description
Full Text Search
 

To Download LM224A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LM224A - LM324A
Low Power Quad Operational Amplifiers
Wide gain bandwidth: 1.3MHz Large voltage gain: 100dB Very low supply current/ampli: 375A Low input bias current: 20nA Low input offset voltage: 3mV max. Low input offset current: 2nA Wide power supply range: Single supply: +3V to +30V Dual supplies: 1.5V to 15V Input common-mode voltage range includes ground ESD internal protection: 2KV
N DIP14 (Plastic Package)
Description
These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. All the pins are protected against electrostatic discharges up to 2KV (as a consequence, the input voltages must not exceed the magnitude of VCC+ or VCC-.)
D SO-14 (Plastic Micropackage)
P TSSOP-14 (Thin Shrink Small Outline Package)
Order Codes
Part Number LM224AN LM224AD/ADT LM224APT LM324AN LM324AD/ADT LM324APT Temperature Range Package DIP SO TSSOP (Thin Shrink Outline Package) DIP SO TSSOP (Thin Shrink Outline Package) Packaging Tube Tube or Tape & Reel Tape & Reel Tube Tube or Tape & Reel Tape & Reel
-40C, +105C
0C, +70C
February 2005
Revision 2
1/16
LM224A-LM324A
Pin & Schematic Diagram
1 Pin & Schematic Diagram
Figure 1: Pin connections (top view)
Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 Inverting Input 2 5 6 + + + + 14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3
Output 2 7
Figure 2: Schematic diagram (1/4 LM124A)
2/16
Absolute Maximum Ratings 2 Absolute Maximum Ratings
LM224A-LM324A
Table 1: Key parameters and their absolute maximum ratings
Symbol VCC Vi Vid Ptot Supply voltage Input Voltage Differential Input Voltage 1 Power DissipationN Suffix D Suffix Output Short-circuit Duration 2 Iin Toper Tstg Rthja Input Current 3 Operating Free-air Temperature Range Storage Temperature Range Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14 500 Parameter LM124A LM224A 16 or 32 -0.3 to Vcc + 0.3 32 500 400 Infinite 50 -55 to +125 -40 to +105 -65 to +150 103 100 66 0 to +70 mA C C C/W 500 400 LM324A Unit V V V mW mW
1) Either or both input voltages must not exceed the magnitude of VCC+ or VCC-. 2) Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3) This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
3/16
LM224A-LM324A 3 Electrical Characteristics
Electrical Characteristics
Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25C (unless otherwise specified
Symbol Vio Input Offset Voltage - note 1 Tamb = +25C Tmin Tamb Tmax Input Offset Current Tamb = +25C Tmin Tamb Tmax Input Bias Current - note 2 Tamb = +25C Tmin Tamb Tmax Large Signal Voltage Gain VCC+ = +15V, RL = 2k, Vo = 1.4V to 11.4V Tamb = +25C Tmin Tamb Tmax Supply Voltage Rejection Ratio (Rs 10k) SVR VCC+ = 5V to 30V Tamb = +25C Tmin Tamb Tmax Supply Current, all Amp, no load Tamb = +25C VCC = +5V VCC = +30V Tmin Tamb Tmax VCC = +5V VCC = +30V Input Common Mode Voltage Range VCC = +30V - note 3 Tamb = +25C Tmin Tamb Tmax Common Mode Rejection Ratio (Rs 10k) Tamb = +25C Tmin Tamb Tmax Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V High Level Output Voltage VCC = +30V Tamb = +25C Tmin Tamb Tmax Tamb = +25C Tmin Tamb Tmax VCC = +5V, RL = 2k Tamb = +25C Tmin Tamb Tmax 65 65 110 Parameter Min. Typ. 2 Max. 3 5 nA 2 20 40 nA 20 100 200 V/mV 50 25 100 Unit mV
Iio
Iib
Avd
dB
mA 0.7 1.5 0.8 1.5 1.2 3 1.2 3 V 0 0 VCC 1.5 VCC -2 dB 70 60 20 10 12 80 mA 40 20 50 70 mA A V RL = 2k RL = 10k 26 26 27 27 3.5 3 27 28
ICC
Vicm
CMR
Isource
Isink
VOH
4/16
Electrical Characteristics
LM224A-LM324A
Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25C (unless otherwise specified
Symbol VOL Parameter Low Level Output Voltage (RL = 10k) Tamb = +25C Tmin Tamb Tmax Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2k, CL = 100pF, unity Gain Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2k, CL = 100pF Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2k, Vo = 2Vpp, CL = 100pF, VCC = 30V Equivalent Input Noise Voltage f = 1kHz, Rs = 100, VCC = 30V Input Offset Voltage Drift Input Offset Current Drift Min. Typ. 5 Max. 20 20 V/s 0.4 MHz 1.3 % 0.015 40 7 10 120 30 200 nV ----------Hz Unit mV
SR GBP THD en DVio DIIio
V/C
pA/C dB
4 Vo1/Vo2 Channel Separation - note 1kHz f 20kHZ
1) Vo = 1.4V, Rs = 0, 5V < VCC+ < 30V, 0 < Vic < VCC + - 1.5V 2) The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4) Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
5/16
LM224A-LM324A
Figure 3: Input bias current vs. ambient temperature
INPUT BIAS CURRENT versus AMBIENT TEMPERATURE
IB (nA)
Electrical Characteristics
Figure 6: Current limiting
24 21 18 15 12 9 6 3 0
-55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (C)
Figure 4: Input voltage range
Figure 7: Supply current
SUPPLY CURRENT
4
VCC
SUPPLY CURRENT (mA)
3
mA -
ID
2
+
1
Tamb = 0C to +125C
Tamb = -55C
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
Figure 5: Gain bandwidth product
Figure 8: Common mode rejection ratio
6/16
Electrical Characteristics
Figure 9: Electrical curves
LM224A-LM324A
7/16
LM224A-LM324A
Figure 10: Input current
Electrical Characteristics
Figure 12: Voltage gain
Figure 11: Power supply & common mode rejection ratio
Figure 13: Large signal voltage gain
8/16
Typical Single - Supply Applications 4 Typical Single - Supply Applications
LM224A-LM324A
Figure 17: High input Z adjustable gain DC instrumentation amplifier
Figure 14: AC coupled interting amplifier
if R1 = R5 and R3 = R4 = R6 = R7
Figure 15: AC coupled non inverting amplifier
2R 1 e0 = 1 + ---------R 2
(e2 -e1)
As shown e0 = 101 (e2 - e1).
Figure 18: DC summing amplifier
Figure 16: Non-inverting DC gain
e0 = e1 +e2 -e3 -e4 Where (e1 +e2) (e3 +e4) to keep e0 0V
9/16
LM224A-LM324A
Figure 19: Low drift peak detector
Typical Single - Supply Applications
Figure 21: High input Z, DC differential amplifier
R1 R4 For ------ = ------R R 2 3 (CMRR depends on this resistor ratio match)
Figure 20: Activer bandpass filter
e0
1 + R4 ------ R3
(e2 - e1)
As shown e0 = (e2 - e1)
Figure 22: Using symetrical amplifiers to reduce input current (general concept)
Fo = 1kHz Q = 50 Av = 100 (40dB)
10/16
Typical Single - Supply Applications
Table 3: Vcc+ = +15V, Vcc- = 0V, Tamb = 25C (unless otherwise specified)
Symbol Vio Avd Icc Vicm VOH VOL Ios GBP SR RL = 2k (VCC RL = 10k Vo = +2V, VCC = +15V RL = 2k, CL = 100pF RL = 2k, CL = 100pF
+=15V)
LM224A-LM324A
Conditions RL = 2k No load, per amplifier
Value 0 100 350 0 to +13.5 +13.5 5 +40 1.3 0.4
Unit mV V/mV
A
V V mV mA MHz V/s
11/16
LM224A-LM324A 5 Macromodel
Macromodel
Warning: Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM324 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 ENDS 12/16
Package Mechanical Data 6 Package Mechanical Data
LM224A-LM324A
6.1 DIP14 Package
Plastic DIP-14 MECHANICAL DATA
mm. DIM. MIN. a1 B b b1 D E e e3 F I L Z 1.27 3.3 2.54 0.050 8.5 2.54 15.24 7.1 5.1 0.130 0.100 0.51 1.39 0.5 0.25 20 0.335 0.100 0.600 0.280 0.201 1.65 TYP MAX. MIN. 0.020 0.055 0.020 0.010 0.787 0.065 TYP. MAX. inch
P001A
13/16
LM224A-LM324A 6.2 SO-14 Package
SO-14 MECHANICAL DATA
DIM. A a1 a2 b b1 C c1 D E e e3 F G L M S 3.8 4.6 0.5 8.55 5.8 1.27 7.62 4.0 5.3 1.27 0.68 0.149 0.181 0.019 8.75 6.2 0.35 0.19 0.5 45 (typ.) 0.336 0.228 0.1 mm. MIN. TYP MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.003 MIN.
Package Mechanical Data
inch TYP. MAX. 0.068 0.007 0.064 0.018 0.010 0.019
0.344 0.244 0.050 0.300 0.157 0.208 0.050 0.026
8 (max.)
PO13G
14/16
Package Mechanical Data 6.3 TSSOP14 Package
TSSOP14 MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b c D E E1 e K L 0 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8 0.75 0 0.018 0.024 1 TYP MAX. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 0.004 0.039 MIN. TYP. inch
LM224A-LM324A
MAX. 0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176
8 0.030
A
A2 A1 b e K c L E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
15/16
LM224A-LM324A 7 Summary of Changes
Date 01 March 2001 01 Feb. 2005 Revision 1 2 First Release
Summary of Changes
Description of Changes
- Table 1 on page 3: explanation of Vid and Vi limits - Macromodel updated
16/16


▲Up To Search▲   

 
Price & Availability of LM224A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X